Configuration¶
This guide explains how to configure the BCI-MCP system for your specific needs.
Configuration Files¶
BCI-MCP uses several configuration files:
config.yaml
: Main configuration file for the system.env
: Environment variables for Docker and sensitive settingsmkdocs.yml
: Documentation site configuration
Basic Configuration¶
config.yaml¶
The main configuration file supports the following settings:
# Basic settings
application:
name: "BCI-MCP"
version: "1.0.0"
log_level: "INFO" # DEBUG, INFO, WARNING, ERROR, CRITICAL
# BCI device configuration
bci:
device_type: "openBCI" # openBCI, emotiv, neurosky, etc.
sampling_rate: 250 # Hz
channels: 8 # Number of EEG channels
port: "/dev/ttyUSB0" # Serial port or device path
# MCP settings
mcp:
api_endpoint: "https://api.example.com/mcp"
api_key: "${MCP_API_KEY}" # Loaded from .env file
model: "default"
timeout: 30 # seconds
Environment Variables (.env)¶
Create a .env
file in the root directory with your sensitive configuration:
MCP_API_KEY=your_api_key_here
DATABASE_URL=postgresql://user:password@localhost/bci_mcp
Advanced Configuration¶
Signal Processing¶
Configure signal processing in the config.yaml
file:
signal_processing:
filters:
- type: "bandpass"
low_cutoff: 1 # Hz
high_cutoff: 50 # Hz
- type: "notch"
frequency: 60 # Hz
features:
- type: "power_spectral_density"
enabled: true
- type: "time_domain"
enabled: true
Model Context Protocol (MCP)¶
Configure MCP settings for advanced usage:
mcp_advanced:
context_window: 5000 # tokens
temperature: 0.7
max_tokens: 2000
stream_response: true
Configuration Validation¶
To validate your configuration:
python src/utils/validate_config.py
This will check your configuration files for errors and provide recommendations.
Next Steps¶
After configuring your BCI-MCP system, proceed to BCI Features to learn about the available features.